Simon F. Giszter, Ph.D.

Simon F. Giszter, Ph.D.
Dept. Neurobiology and Anatomy,

Drexel University College of Medicine

Email: sgiszter(at)
Phone: 215 991 8412

For mobile formatted website - click here

Giszter Modular Neuromechanics Laboratory


My laboratory is driven by two goals:

First, we seek to understand the fundamental building blocks of motor behavior.

Second, we seek to understand the plasticity of motor behavior and the elaboration of motor skill from these building blocks.

These central goals lead naturally to several different projects. These all using animal model systems, as a means to achieve an understanding of modularity and plasticity across species and following injury.

Project 1: To understand modularity in the spinal circuits that organize purposeful reflex and rhythmic movements, even when separated from the brain.

We seek to record in spinal cord, muscles, and to analyze the structure of the musculoskeletal system and movements composition to understand the circuitry involved at the spinal level. Our core hypothesis in this project is that the spinal circuits are modular and organized into collections of motor primitives. These are building blocks best suited to the constructing movements that are of the highest evolutionary significance, and that every animal of a species must perform routinely in order to survive and reproduce. Project 1 site.

Project 2: To understand the plastic interactions and cooperative plasticity of cortical and spinal systems.

We use neurorobotics, brain machine interfaces (BMIs), and robot rehabilitation and a range of recording techniques. We seek to record neuromotor activity during normal voluntary tasks, and novel tasks (e.g., using brain machine interfaces and reinforced changes in walking), and after spinal cord injuries when descending systems are severely challenged for compensations. We focus on trunk and hindlimb motor cortex. Our core hypothesis in this project is that cortical plasticity works cooperatively with modular spinal systems, to augment, extend or replace the spinal functions as needed for novel skills or recovery of function after injury. This work links naturally to spinal cord injury research, to neuroengineering and augmenting technologies, and to basic science questions in motor control. Project 2 site.

Project 3: To develop new electrode technologies for spinal cord and brainstem recordings.

This project was conceived in support of the others, because of the limitations of existing recording technologies and paucity of tools available. The new electrode technologies we are testing are based on braided electrodes of ultrafine wires that can bend and flex without overlystressing the surrounding brain or spinal cord (which are fragile and have the consistency of soft jello). Our core hypothesis is that the open lattice and high flexibility of braids will minimize tissue inflammation and stress and enable long term recordings and neural interfaces, even in otherwise very difficult brain and spinal cord sites. Project 3 site.

These three projects require collaborations of neuroscientists, of engineers, and thus of neuroengineers trained to speak the languages and collaborate across both domains. We recruit and train both neuroscientists, kinesiologists, biomechanicians, and bioengineers as graduate students in order to have a team that talks and operates freely across disciplines.

Research Translational Potential

Motor Modularity after injury and rehabilitation; Neuroengineeering and new neuroprostheses designs; Neurorobotic Rehabilitation Strategies to Promote Functional Recovery after Spinal Cord or otherInjury
Research Funding

Research in the Laboratory has been variously funded by NIH through NINDS and NIBIB, by NSF through the CRCNS Program, by the Craig Neilsen Foundation, by the PA Department of Health. Laboratory staff have also been funded by Drexel University Graduate Scholarships and Fellowships, by the Brody Foundation, and by a Gatsby Foundation award. The Laboratory has also been a past participant in the Drexel Spinal Cord Research Center NIH NINDS funded Program Project Grant (from the lab's inception in 1994 to 2003).


Simon Giszter did his B.A. in the Natural Sciences at Cambridge University, UK. He did his Ph.D. in Biology at the University of Oregon under the mentorship of Dr. Graham Hoyle, and he did postdoctoral fellowships at UCLA, in the Crump Institute for Biomedical Engineering, and at MIT, in the Department of Brain and Cognitive Sciences, under the mentorship of Institute Professor Dr. Emilio Bizzi. He was promoted to Research Scientist at MIT before then joining Drexel College of Medicine (while it was still in one of its former iterations, the Medical College of Pennsylvania and Hahnemann University). He is now a professor in the Department of Neurobiology and Anatomy at Drexel University College of Medicine, with a joint appointment in the School of Biomedical Engineering and Health Systems, at Drexel.

Lab Members: The Lab Team

David Logan, Ph.D, Post-doc
John Lee, B.S., MD/PhD Graduate Student in Medical Engineering.
Qi Yang, B.S., Ph.D. Graduate Student in Neuroscience.
Josie Van Loozen, Ph.D. Graduate Student in Neuroscience.
Kendall Schmidt (Ankudovich), Ph.D. Graduate Student in Biomedical Engineering.
Joanna Wycech, MS Graduate Student in Biomedical Engineering.
Anthony Himes, MS Technician.

Lab Members: Visiting and summer students

Akini Moses, MS graduate student, Graduate School of Biomedical Sciences and Professional Studies
Karim Merchant, MD student, Drexel University College of Medicine
Carl Brown, MD student, Drexel University College of Medicine

Giszter Lab Alums and former team members - links and gallery

Laboratory Web Site - Additional Links

Giszter Lab Bibliography via PubMed

Selected Publications by Area


1.Giszter SF (2015) Motor primitives--new data and future questions.Curr Opin Neurobiol. 2015 Aug;33:156-65.

2.Giszter SF, Hart CB (2013) Motor primitives and synergies in the spinal cord and after injury--the current state of play. Ann N Y Acad Sci. 2013 Mar;1279:114-26.

3. Hart CB, Giszter SF. (2010) A neural basis for motor primitives in the spinal cord. J Neurosci. 2010 Jan 27;30(4):1322-36.

4. Kargo WJ, Giszter SF. (2008) Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J Neurosci. 2008 Mar 5;28(10):2409-25.

5.Hart CB and Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci. 2004 Jun 2;24(22):5269-82.

6. Kargo WJ and Giszter. SF. (2000). Rapid correction of aimed movements by summation of force field primitives. J. Neurosci. 20(1):409-426.

Function in spinal rats that walk and their cortical plasticity

7. Udoekwere UI, Oza CS, Giszter SF. (2016) Teaching adult rats spinalized as neonates to walk using trunk robotic rehabilitation: elements of success, failure, and dependence. J Neurosci. (in press)

8. Oza CS, Giszter SF. (2015) Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats. J Neurosci. 2015 May 6;35(18):7174-89.

9. Oza CS, Giszter SF. (2014) Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training. Exp Neurol. 2014 Jun;256:57-69.

10. Giszter SF, Hockensmith G, Ramakrishnan A, Udoekwere UI.(2010) How spinalized rats can walk: biomechanics, cortex, and hindlimb muscle scaling--implications for rehabilitation. Ann N Y Acad Sci. 1198:279-93.

11. Giszter SF, Davies MR, Ramakrishnan A, Udoekwere UI, Kargo WJ. (2008) Trunk sensorimotor cortex is essential for hindlimb weight-supported locomotion in adult rats spinalized as P1/P2 neonates. J. Neurophysiology. 100(2):839-51. Epub 2008 May 28.

12. Giszter SF Davies MR and Graziani V (2008) Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates. Exp. Brain Research 190(1):53-69. Epub 2008 Jul 9.

13. Giszter SF Davies MR Graziani VG (2007) Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations. J. Neurophysiol. 97(4):2663-75

BMI control of trunk and locomotion from cortex using motor plasticity

14. Song W, Cajigas I, Brown EN, Giszter SF.(2015) Adaptation to elastic loads and BMI robot controls during rat locomotion examined with point-process GLMs. Front Syst Neurosci. 2015 Apr 28;9:62.

15. Song W, Giszter SF. (2011) Adaptation to a cortex-controlled robot attached at the pelvis and engaged during locomotion in rats. J Neurosci. 2011 Feb 23;31(8):3110-28.

16. Song WG and Giszter SF (2009) Multiple Types of Movement Related Information Encoded in Hindlimb/Trunk Cortex in Rats and Potentially Available for Brain Machine Interface Controls. IEEE Trans Biomed Eng. 56(11 Pt 2):2712-6. Epub 2009 Jul 14.

17. Hsieh FH and Giszter SF (2011) Robot-driven Spinal Epidural Stimulation Compared withConventional Stimulation in Adult Spinalized Rats. IEEE-EMBS Conference Proceedings. Boston, MA.

Electrode development

18. Giszter SF.(2015) Spinal primitives and intra-spinal micro-stimulation (ISMS) based prostheses: a neurobiological perspective on the "known unknowns" in ISMS and future prospects. Front Neurosci. 2015 Mar 20;9:72.

19. Kim TG, Branner A, Gulati T, and Giszter SF (2013) Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. J Neural Engineering. Aug;10(4):045001. doi: 10.1088/1741-2560/10/4/045001. Epub 2013 May 31

20. US Patent US8639311B2: Sensing probe comprising multiple, spatially separate, sensing sites. Jan 28, 2014.

21.US Patent US8534176B2: Method and Apparatus for braiding microstrands. Sept 17, 2013