Septin-Driven Coordination of Actin and Microtubule Remodeling Regulates the Collateral Branching of Axons


Department of Biology, Drexel University, Philadelphia, PA 19104, USA
Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA

Summary

Axon branching is fundamental to the development of the peripheral and central nervous system [1, 2]. Branches that sprout from the axon shaft are termed collateral or interstitial branches [3, 4]. Collateral branching of axons requires the formation of filopodia from actin microfilaments (F-actin) and their engorgement with microtubules (MTs) that splay from the axon shaft [4–6]. The mechanisms that drive and coordinate the remodeling of actin and MTs during branch morphogenesis are poorly understood. Septins comprise a family of GTP-binding proteins that oligomerize into higher-order structures, which associate with membranes and the actin and microtubule cytoskeleton [7, 8]. Here, we show that collateral branching of axons requires SEPT6 and SEPT7, two interacting septins [9]. In the axons of sensory neurons, both SEPT6 and SEPT7 accumulate at incipient sites of filopodia formation. We show that SEPT6 localizes to axonal patches of F-actin and increases the recruitment of cortactin, a regulator of Arp2/3-mediated actin polymerization, triggering the emergence of filopodia. Conversely, SEPT7 promotes the entry of axonal MTs into filopodia, enabling the formation of collateral branches. Surprisingly, septins provide a novel mechanism for the collateral branching of axons by coordinating the remodeling of the actin and microtubule cytoskeleton.

Results

SEPT6 and SEPT7 Regulate Axon Collateral Branching

Dorsal root ganglia (DRG) neurons from chick embryos generate collateral branches in vivo and in vitro [10, 11]. With this model system, we focused our studies on septins 6 and 7, which have been separately shown to be required for the morphogenesis of dendrites [12–14], but their molecular functions remain unknown. To determine whether SEPT6 and SEPT7 constitute a hetero-oligomeric complex, we performed quantitative immunoprecipitations and immunodepletions. Approximately 24% of total SEPT6 precipitated with SEPT7 (Figures S1A and S1B available online), and immunodepletion of SEPT6 to ~ 70% of its total levels led to ~ 30% depletion of SEPT7 (Figure S1C). Thus, a fraction of SEPT6 (~24%) and SEPT7 (~43%) appear to interact with one another, indicating that these septins could have overlapping and distinct functions.

To test whether septins are involved in axon collateral branching, we overexpressed and depleted SEPT6 and SEPT7. Overexpression of SEPT6-GFP and SEPT7-GFP in embryonic day 10 (E10) DRGs resulted in a 2- to 3-fold increase in the number of branches per 50 μm of distal axon length (Figures 1A–1D). The percentage of axons with two or more branches also increased (Figure 1E); the branches of control and septin-overexpressing axons contained the synaptic vesicle marker synaptotagmin 1 and thus appeared to be functional (Figures S2A–2C). Septin overexpression also increased axon branching in primary rat hippocampal neurons (Figures S2D–S2H). Next, we transfected E7 DRGs with GFP-expressing pSUPER plasmids that expressed chicken-specific SEPT6 and SEPT7 shRNAs. We chose E7 DRGs because they generate more branches and thus allow for quantifiable effects after 2–3 days of septin knockdown. This approach led to ~50% depletion of endogenous septins (Figures S2I–S2P). SEPT6- and SEPT7-depleted neurons developed three times fewer collateral branches than did control cells, and the percentage of axons with no branches increased (Figures 1F–1J). The phenotype was rescued by expression of shRNA-resistant SEPT6-GFP and SEPT7-GFP (Figures 1I and 1J). Consistent with previous reports [15, 16], septin depletion also decreased the length of axons, but next we focused on the mechanisms of axon branching, which are more similar to axon guidance than extension [5, 6].

SEPT6 and SEPT7 at Sites of Filopodia Formation: SEPT6 Regulates the Rate of Filopodial Initiation

We sought to determine the spatiotemporal distribution of SEPT6 and SEPT7 with respect to axonal filopodia, which are the precursors of collateral branches [4]. In DRG axons, SEPT6 displayed a punctate distribution throughout the axon shaft and accumulated at the base of F-actin-rich filopodia (Figure 2A). SEPT7 was less punctate than SEPT6 in the axonal shaft and localized to chevron-like structures at the base of filopodia (Figures 2B and 2C). Simultaneous staining for SEPT6 and SEPT7 showed a distinct pattern of localization with some overlap at the neck of filopodial protrusions (Figure 2C, inset arrow). Time-lapse imaging of live neurons with low levels of SEPT6-GFP and SEPT7-GFP expression revealed that both septins accumulate at incipient sites of filopodia formation (Figures 2D and 2E; Movies S1 and S2). These data suggest that SEPT6 and SEPT7 could play a critical role in the formation of axonal filopodia.

We tested this hypothesis by measuring the rate of filopodia formation in live DRGs after septin overexpression and depletion. Overexpression of SEPT6-GFP doubled the rate of filopodia formation, but SEPT7-GFP did not have an effect (Figure 2F; Movie S3). Similarly, expression of SEPT6 shRNA, but not SEPT7 shRNA, decreased the rate of filopodia formation (Figure 2G). Thus, SEPT6 functions at the level of filopodial initiation, whereas SEPT7 does not appear to have a role in this process.

*These authors contributed equally to this work
*Correspondence: ggallo@drexelmed.edu (G.G.), ets33@drexel.edu (E.T.S.)
Figure 1. SEPT6 and SEPT7 Regulate the Collateral Branching of Sensory Axons

(A–C) Distal axon segments of E10 DRGs transfected with GFP, SEPT6-GFP, and SEPT7-GFP and stained for β-tubulin. Arrowheads point to collateral branches. Scale bars represent ~10 μm.

(D and E) Graph shows the mean number of >5 μm long branches per 50 μm of distal axon shaft in DRGs transfected with GFP (n = 46), SEPT6-GFP (n = 46), and SEPT7-GFP (n = 55). Histogram (E) shows percentage of axon segments with 0–6 branches.

(F–H) Distal axon segments of E7 DRGs transfected with pSUPER-GFP plasmids expressing SEPT6 and SEPT7 shRNAs and stained for β-tubulin. Scale bars represent ~10 μm.

(I and J) Graph shows the mean number of >5 μm long branches per 50 μm of distal axon shaft in DRGs transfected with control pSUPER-GFP (n = 31), shRNAs against SEPT6 (n = 32) and SEPT7 (n = 33), and rescue plasmids encoding for shRNA-resistant SEPT6 (n = 20) and SEPT7 (n = 20). Histogram (J) shows percentage of axon segments with 0–9 branches.
SEPT6 Increases Cortactin Recruitment to Axonal Patches of F-actin and Triggers Emergence of Filopodia

Because axonal filopodia emerge from patches of F-actin [17–19], we probed for the localization and function of SEPT6 with respect to actin patches. SEPT6 colocalized with F-actin in axonal patches (Figure 3A, see also arrowheads in Figure 2A) and at the base of axonal filopodia (Figure 3A). In contrast, SEPT7 localized to the sides of F-actin patches and the neck of filopodia, exhibiting little overlap with actin patches (Figure 3B). These data indicated that SEPT6 could bind preferentially to Arp2/3-nucleated branched actin filaments, which are prevalent in actin patches and at the base of axonal filopodia [19]. Indeed, in vitro binding of recombinant SEPT6-GFP to actin filaments and branch points increased in the presence of Arp2/3 (Figures S3A–S3D), whereas SEPT7-GFP binding was independent of actin branching and occurred predominately along the length of actin filaments (Figures S3E–S3H). Consistent with these results, a recent yeast two-hybrid screen identified Arp2 as an interacting partner of SEPT6, but not SEPT7 [20]. Thus, SEPT6 appears to associate preferentially with the Arp2/3-dependent patches of F-actin.

Although the majority of filopodia emerge from actin patches, only a fraction of patches develops to filopodia [17–19]. In time-lapse movies of mCherry-actin and SEPT6-GFP,
actin patches formed and dissipated together with SEPT6 (Figure 3C). We therefore reasoned that SEPT6 could regulate the formation or lifespan of F-actin patches and/or their conversion to axonal filopodia. Tracking and quantitative analysis of mCherry-actin showed that neither the overexpression nor depletion of SEPT6 affected the rate of formation and lifespan of F-actin patches (Figures S3I–S3L). Notably, though, SEPT6-GFP overexpression induced a 2-fold increase in the percentage of actin patches that gave rise to filopodia (Figure 3D), and depletion of endogenous SEPT6 had the opposite effect (Figure 3E). Overexpression or depletion of SEPT7 did not affect any of the parameters of mCherry-actin patch dynamics (Figures 3D, 3E, and S3I–S3L). Therefore, SEPT6 appears to trigger the initiation of filopodia from F-actin patches.

To determine how SEPT6 promotes filopodia formation, we tested whether SEPT6 affects the localization of cortactin, an activator of Arp2/3-mediated actin polymerization, which has...
been shown to induce the protrusive activity of neuronal actin patches [19, 21]. SEPT6 and cortactin colocalized in actin patches and at the base of filopodia (Figures 3F and 3G). Overexpression and depletion of SEPT6 increased and decreased the levels of cortactin in actin patches, respectively (Figures 3H and 3I). This effect was specific to cortactin, as shown by the fact that the levels of the Wiskott-Aldrich syndrome-related protein WAVE3 did not change (Figure S3M). Interestingly, SEPT6 overexpression also raised cortactin levels at the lamellipodia of epithelial cells (Figures S3N and S3O), suggesting that SEPT6-mediated recruitment of cortactin is a conserved mechanism for the induction of actin-based membrane protrusions from neurons to epithelia.

SEPT7 Promotes Entry of Axonal MTs into Filopodia

Formation of F-actin-rich filopodia is necessary but not sufficient for the morphogenesis of collateral branches, which must be invaded by axonal MTs in order to mature [22, 23]. Although SEPT7 does not function in the protrusive phase of branch morphogenesis (Figures 2F and 2G), SEPT7 is clearly required for branch formation (Figures 1I and 1J). We therefore asked whether SEPT7 regulates the organization of axonal MTs during branching.

We overexpressed and depleted SEPT7 or SEPT6 and screened for the presence of MTs in axonal filopodia. In SEPT7-GFP-expressing axons, there were twice as many filopodia with MTs as in GFP- and SEPT6-GFP-expressing neurons (Figure 4A). In contrast, SEPT6-GFP overexpression did not increase MT presence in filopodia (Figure 4A). Depletion of endogenous SEPT6 or SEPT7, however, decreased MT-positive filopodia by 50% relative to controls (Figure 4B). Thus, both SEPT6 and SEPT7 are necessary, but only SEPT7 can promote MT localization in axonal filopodia. In agreement with this result, recombinant SEPT7-GFP bound in vitro to MTs directly and much stronger than SEPT6-GFP (Figures 4D–4H).

Unbundling and fragmentation of the axonal bundle of MTs generate new MT plus ends and shorter MTs, which are free to enter into axonal filopodia [22, 23]. By staining for the MT end binding protein EB1, we found that SEPT7-GFP-overexpressing axons contained more MT plus ends than GFP- and SEPT6-GFP-overexpressing axons (Figure 4C). In SEPT7-GFP-overexpressing axons, EB1 particles were seen in larger clusters and many of them colocalized with SEPT7-GFP (Figures S4A and S4B). In addition to this increase in MT ends, the axonal MT array appeared to unravel at sites of SEPT7-GFP accumulation (Figure 4J). In contrast, the axonal MT array in SEPT6-GFP-overexpressing axons was firmly bundled (Figure 4I). To confirm that the axonal cytoskeleton was indeed altered in SEPT7-GFP-overexpressing DRGs, we used correlative fluorescence and platinum replica electron microscopy. At the nanometer scale of this imaging technique, axonal bundles appeared to split apart at sites of SEPT7-GFP accumulation, and individual cytoskeletal filaments were seen to stick out of the main axon shaft (Figures 4K and S4C–S4E). Taken together, these data indicate that SEPT7 alters the organization of the main axon bundle, allowing MTs to enter nascent filopodia, which in turn mature to collateral branches.

Discussion

Septins have been shown to be essential for neuronal migration [16] and axon guidance [15], but the molecular function of septins was unknown. Here, we have shown that two interacting septins, SEPT6 and SEPT7, trigger actin and MT reorganization. Our results suggest that the combined action of SEPT6 and SEPT7 provides a coordinating mechanism for the collateral branching of axons.

Previous work has linked septins and actin organization to common signaling pathways [24, 25], but it was unknown whether septins function in the assembly of F-actin structures [26]. Surprisingly, we have discovered that SEPT6 triggers the growth of F-actin patches into axonal filopodia. Because SEPT6 does not affect the formation or lifespan of actin patches, we posit that SEPT6 associates with actin patch filaments and F-actin branch points and acts as a scaffold that increases the local concentration of cortactin, triggering the transition of actin patches to filopodia [21]. This scaffold-like function of SEPT6 resembles the role of SEPT2 as a scaffold of myosin II [27] and appears to be conserved in the lamellipodia of epithelial cells. Taken together, these results have uncovered an unexpected link between SEPT6- and Arp2/3-mediated actin polymerization.

SEPT7 alters the organization of axonal MTs, promoting their localization in filopodia. Previous work has shown that septins prevent microtubule-associated proteins (MAPs) from binding to MTs [25, 28]. Thus, it is possible that SEPT7 displaces neuronal MAPs, which protect axonal MTs from severing enzymes, resulting in the formation of new MT tips [29, 30]. Alternatively, SEPT7 may achieve the same effect by altering the posttranslational modifications of MTs [25, 28]. The localization of SEPT7 to the base of axonal filopodia is similar to that observed at the base of dendritic spines [12, 13], suggesting that SEPT7 may also be involved in MT targeting to dendritic protrusions [31]. This role of SEPT7 would not preclude its putative function as a membrane diffusion barrier [32].

Although SEPT6 and SEPT7 perform distinct functions, a functional and physical crosstalk appears to be in effect. First, SEPT7 is functionally dependent on SEPT6; even though not in itself sufficient, SEPT6 is necessary for MT presence in filopodia (Figures 4A and 4B). Second, a significant fraction of SEPT6 and SEPT7 interact with one another (Figure S1). Third, some overlap in SEPT6 and SEPT7 localization is observed at the base of axonal filopodia (Figure 2). Taken together, our results suggest that SEPT6 and SEPT7 comprise a regulatory module, which activates the reorganization of the actin and MT cytoskeleton in a coordinated fashion, affecting the development of axon collateral branches. Future studies could exploit this role of septins to control the sprouting of axons after injury of the nervous system.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures, four figures, and three movies and can be found with this article online at doi:10.1016/j.cub.2012.04.019.

Acknowledgments

We thank Roberto Domínguez and Suk Namgoong (University of Pennsylvania), Makoto Kinoshita (Nagoya University), and Helge Ewers (ETH Zurich) for reagents. The work was supported by NIH grants GM097664 to E.T.S. (PI), NS048090 to G.G. (PI), GM70898 to T.S., and NS028785 to P.W.B., a Drexel CURE grant to G.G. (PI) and E.T.S. (Co-I), and NSF grant 0841245 to P.W.B.

Received: June 10, 2011
Revised: March 23, 2012
Accepted: April 11, 2012
Published online: May 17, 2012
Figure 4. SEPT7 Alters Axonal MT Organization, Facilitating MT Entry into Filopodia

(A and B) Graphs show percentage of filopodia containing MTs in DRG neurons transfected with GFP (n = 215; 46 cells), SEPT6-GFP (n = 383; 48 cells), and SEPT7-GFP (n = 460; 55 cells) or pSUPER-GFP (n = 290; 31 cells) and shRNAs against SEPT6 (n = 191; 32 cells) and SEPT7 (n = 215; 35 cells).

(C) Graph shows number of EB1 particles per μm² of axon surface in DRG neurons transfected with GFP (n = 15), SEPT6-GFP (n = 19), and SEPT7-GFP (n = 18).

(D–H) Images show rhodamine-labeled MTs (red) coated with increasing concentrations of His-GFP-tagged SEPT6 and SEPT7 (green). Individual MTs are outlined and shown in higher magnification. Graph shows total fluorescence intensity of GFP per MT length (n = 52–57).

(I and J) Images show β-tubulin-stained DRG neurons that overexpress SEPT6-GFP and SEPT7-GFP. Insets show areas of axonal MT unraveling in higher magnification.

(K) Correlative fluorescence and platinum replica EM images of DRG neurons overexpressing SEPT7-GFP (green). Arrow and arrowhead point to sites of SEPT7-GFP accumulation shown in higher magnification.
References


