were rated as significant if the $x^2$ reduction of the fitting procedure exceeded 15% and a z score of $>3$ was reached, corresponding to a probability of $<0.0027$ of detection of false positive peaks.

18. LFPs were recorded from the same microelectrodes as MUA by differential filtering (1 to 100 Hz, 3 dB per octave) and digitized at a sampling rate of 1 kHz. Power spectra were computed with a resolution of 0.5 Hz and normalized to the total power between 0.1 and 100 Hz. Frequencies between 47.5 and 52.5 Hz were routinely excluded from analysis, and in the figures they are displayed as linear interpolation between flanking values. The sample of sufficiently noise-free data was recruited from $N = 36$ recording site pairs (see Fig. 2F). To assess the desynchronizing effect of MUA stimulation, we computed the power spectra of the LFPs before and after MUA stimulation from the same periods of light responses used for cross-correlation analysis and from periods of spontaneous activity that had the same duration.

19. In the entire sample, MUA stimulation enhanced the relative (normalized) power of the LFPs in frequency bands above 14 Hz during periods of both spontaneous and light-evoked activity (beta 14 to 30 Hz) and gamma (>30 Hz), $<0.05$ in a one-sample t test and decreased the power in the low-frequency bands for spontaneous activity (alpha 8 to 13 Hz, $P < 0.001$), theta 4 to 7 Hz, $P < 0.01$, and delta 1 to 3 Hz, $P < 0.05$). For periods of light-evoked activity, the relative decrease in power in the low-frequency range ($<14$ Hz) reached significance (alpha $P < 0.05$, theta $P < 0.01$, and delta $P < 0.01$) only for responses to coherent visual stimuli that also induced response synchronization, but not when compared across all stimulation conditions.

20. For our sample of 760 recording sequences, in which visual coactivation yielded at least 1.5 times as many spikes during responses as during spontaneous activity in five subsequent stimulus presentations, averaged PSTHs and cross-correlograms were computed for the responses to these five stimulus presentations (example in Fig. 2, A to D). Of these 760 sequences, 134 sequences originating from 49 pairs of recording sites showed significant correlation in at least one of the four blocks; 85 sequences were recorded with coherent and 49 with noncoherent visual stimulation (see Fig. 3). A robust measure for correlation strength, which is close to the mean percentage increase in firing probability, is defined as the ratio of its height to the mean of the correlation function, expressed either as a real number between 0 and 1 or as a percentage. Computing the differences of FMA provides the identity of individual measurement series before pooling. For the same reason, power changes in the gamma frequency band of the LFP are also expressed as differences. Because we had multiple measurement sequences (2.8 on average) for most of the recording site pairs, data are presented (Figs. 2, E and F, and 3D) and used in statistical evaluation as average values per pair. We did not normalize the correlograms for the number of stimulus presentations because this would provide no additional information and because the number of trials for each recording sequence (4 times 5) was the same.

21. The analysis was restricted to those cases where spontaneous fluctuations in correlation strength (FMA) remained within 1 SD of the entire distribution, which corresponded to a value of 0.251 FMA. This requirement was met by 64 of 85 recording sequences during coherent visual stimulation and by 38 of 49 recording sequences during noncoherent visual stimulation. Data for correlograms during noncoherent visual stimulation without MUA activation are not shown.


25. We thank S. Herzog and H. Klön-Lipok for help with the experiments, M. Sum and E. Raffel for expert histology, and R. Puhl for support with the graphics.

4 October 1995; accepted 6 February 1996

Short-Term Plasticity of a Thalamocortical Pathway Dynamically Modulated by Behavioral State

Manuel A. Castro-Alamancos* and Barry W. Connors

The neocortex receives information about the environment and the rest of the brain through pathways from the thalamus. These pathways have frequency-dependent properties that can strongly influence their effect on the neocortex. In 1943 Morison and Dempsey described “augmenting responses,” a form of short-term plasticity in some thalamocortical pathways that is triggered by 8- to 15-herz activation. Results from anesthetized rats showed that the augmenting response is initiated by pyramidal cells in layer V. The augmenting response was also observed in awake, unrestrained animals and was found to be dynamically modulated by their behavioral state.

Synaptic pathways originating in the thalamus provide sensory and motor information to the neocortex (1, 2). The response characteristics of these pathways are not static but display short-term plasticity (that is, frequency-dependent properties). Thalamocortical pathways are known to be modulated during sleep-wake cycles (1, 2), but the regulation of their plasticity during different waking states has not been studied previously. If this short-term plasticity varied dynamically with behavioral state, the capacity for information processing could be increased. In 1943 Morison and Dempsey showed that low-frequency (8- to 15-Hz) activation of certain thalamic pathways causes a progressively “augmenting response” in the neocortex (3). This robust form of short-term plasticity has been demonstrated repeatedly in both motor (4) and sensory (5) regions of the neocortex. But despite extensive study, there is no consensus regarding the mechanisms of the augmenting response (6) or its relation to behavior. We have investigated the augmenting response in a synaptic pathway from the ventrolateral nucleus (VL) of the thalamus to the sensorimotor cortex and explored its mechanisms and modulation by behavioral state.

Single electrical stimuli delivered to the VL of the anesthetized rat evoked a characteristic field potential in the depth of the parietofrontal cortex (Fig. 1A) (7). A short-latency primary response was followed by 200 ms later by a long-latency potential. Paired stimuli, separated by 100 ms, generated an augmenting response (Fig. 1B); the second response at this interval was several times larger than the first and was also followed by the long-latency potential. The narrow effective time window for generating an augmenting response, illustrated in Fig. 1C, was between about 50 ms and the peak of the long-latency potential (200 ms), after which the second response was not augmented. Current-source density (CSD) analysis revealed that the primary VL response, the onset of the augmenting response, and the long-latency potential were all generated by neurons of layer V (Fig. 1D). After the onset of the augmenting response, strong current sinks spread quickly into upper cortical layers and horizontally into adjacent cortical regions. The area of horizontal spread of the augmenting response in the frontoparietal neocortex is shown in Fig. 1E (8).

The relevance of the augmenting response to behavior has not been demonstrated, although the response has been shown to vary between sleep and waking (9). We found that the VL-generated augmenting response was strong and reliable in awake, unrestrained rats, with characteristics virtually identical to those observed in anesthetized animals (Fig. 2A, “resting”). However, the augmenting response, but not the primary response, was strongly influenced by the behavioral state of the animal. Three states were distinguished in awake rats that were allowed to move freely about an open field (10) resting, exploration, and immobility. The augmenting response was strong when the animal was resting (but not sleeping), but strongly suppressed when the animal was moving about and actively exploring the environment (Fig. 2A, “explo-
In addition, during brief periods of immobility that occurred phasically during exploration periods, a strong augmenting response reappeared (Fig. 2A, "immobility"). The variability of both primary and VL-evoked augmenting responses, and their correspondence with the animal's motor activity, during a 45-min recording session with one rat are shown in Fig. 2, B and C. Similar observations were made in 15 rats. Data from another rat (Fig. 2D) show the loss of the augmenting response during a session of skilled motor behavior, during which a previously trained animal was allowed to reach out of the cage with his forelimb into a tube to grasp food pellets (11).

Initial studies of the augmenting response suggested that it was generated by mechanisms within the thalamus, but more recent work has attributed it to neocortical processes (5, 12). We found that blocking neural activity in the thalamus did not influence the augmenting response (12). We explored the cellular mechanisms of the augmenting response with intracellular and extracellular recordings in the neocortex of anesthetized rats (13). The effect of stimulating the VL with one pulse while recording from the soma of a layer V neuron is shown in Fig. 3A. The short-latency (primary) response was a small excitatory postsynaptic potential (EPSP), which was terminated sharply by a strong, hyperpolarizing inhibitory PSP (IPSP). The IPSP was interrupted by a long-latency depolarizing potential that peaked at 200 ms. A second VL stimulus delivered during the IPSP and before the peak of the long-latency potential (that is, between 50 and 200 ms) triggered an augmented EPSP, which was strong enough to evoke action potentials (Fig. 3B); stimuli delivered during or after the long-latency depolarization were not augmented. All cells recorded in the sensorimotor cortex in response to VL stimulation displayed an augmenting response, although with different latencies (see below). The profile of extracellular currents revealed by CSD analysis (Fig. 1D) indicated a central role for layer V cells in the initiation of the augmenting response. Comparisons of sequentially recorded (that is, in the same electrode penetration) layer V, layer III, and extracellular potentials in vivo reinforced this conclusion (Fig. 3C). Thus, somatic responses from layer V cells were phase-locked to the shortest latency component of the concurrently recorded field potential from layer V (Fig. 3C). Responses of cells from other layers displayed longer latencies, indicating that they could not be triggering the augmenting response. Layer III cell responses were phase-locked with the peak extracellular negativities recorded within that layer (Fig. 3C).

These results indicate that the augmenting response is generated in layer V and that the hyperpolarization of layer V cells plays an important role in the underlying cellular mechanisms. Axons from the VL terminate within layer V (14) and directly excite both pyramidal cells and inhibitory interneurons in layer V. The ensuing strong hyperpolarization...

---

Fig. 1. Stimulation of the VL-to-cortex synaptic pathway induces an augmenting response. (A) Field potential response recorded at a depth of 1000 µm in the sensorimotor neocortex in response to stimulation of the VL of the thalamus with a single current pulse. (B) An augmenting response is induced in response to a second pulse delivered at a 100-ms interval. (C) Augmenting responses are only induced at an interval between 50 ms and the peak of the long-latency potential (175 to 200 ms). The second pulse was delivered at different intervals (15, 25, 50, 100, 150, 200, 250, and 300 ms) with respect to the first pulse (red trace). (D) Current-source density (CSD) analysis of the primary response, augmenting response, and long-latency potential. The sink (red) and source (blue) representation indicates that layer V pyramidal cells are activated by VL stimulation and are responsible for the generation of the augmenting response and long-latency potential. (E) Contour plot of the peak amplitude of the negative field potential recorded in the depth (1500 µm) of the neocortex at 24 equally spaced (1 mm) electrode penetrations in the frontal–parietal neocortex in response to the first and second (augmenting response) pulses delivered at a 100-ms interval. Coordinates are given with respect to bregma and the midline.

---

Fig. 2. Dynamic modulation of the augmenting response with behavioral state in awake, freely moving animals. (A) An augmenting response is induced during periods of resting and immobility but is inactivated during periods of exploration. The numbers in parentheses indicate the location of the trace in (B). (B) An animal was allowed to freely explore an open field while motor activity was monitored with photobeam detectors. Paired pulses at 100 ms were applied to the VL (100 µA) at 0.1 Hz, and responses were recorded in the sensorimotor neocortex. (C) The amplitudes of the first (closed squares) and second (open circles) responses were measured and plotted with respect to the level of motor activity displayed by the animal as indicated by the number of photobeam interruptions (activity counts) per 10-s bins. (D) An animal was trained to grasp food pellets with his forelimb by reaching into a tube outside of the cage. During the period that the animal performed this skilled motor behavior the augmenting response was largely inactivated. Paired pulses at a 100-ms interval were delivered to the VL (60 µA) at 0.2 Hz.
ization of layer V pyramidal cells, generated by this feedforward inhibition (15), may activate or deactivate voltage-dependent conductances in layer V cells (16) that could initiate the augmented response and spread it through local synaptic networks.

These results also show that the augmenting response is dynamically modulated during transitions between awake behavioral states. During active exploration or skilled behavioral performance, the augmenting response was inactivated. This type of modulation is selective, because the primary responses to VL stimulation were not affected. The mechanisms of this modulation are unknown, but they may involve diffuse transmitter systems (for example, acetylcholine and norepinephrine) that are activated during exploration and arousal (17). Stimulation of the midbrain reticular formation can rapidly modulate augmenting responses in anesthetized animals (18). The augmenting response may be involved in generating the 7- to 12-Hz cortical oscillations associated with awake immobility (19); these spontaneous rhythms and the augmenting response both coincidentally terminate with the onset of movement. Loss of the augmenting response during active exploration should profoundly affect the pattern of activity flowing between thalamus and neocortex. Dynamic modulation of short-term thalamocortical plasticity may allow rapid switching between different information processing modes depending on behavioral contingencies.

REFERENCES AND NOTES

3. E. W. Dampay and R. S. Morison, Am. J. Physiol. 138, 283 (1943); R. S. Morison and E. W. Dampay, ibid., p. 297. Augmenting responses are nocorectic field potentials, characteristically surface positive and middle-layer negative, that increase in size during paired or multiple stimuli applied at 8 to 15 Hz; steady state is reached by the third response. Augmenting responses should not be confused with recruiting responses, which are surface negative and middle-layer positive and are induced by stimulating thalamic nuclei that project to nocorectic layer I (L. L. Glenn, J. Hadad, J. P. Roy, M. Deschenes, M. Steriade, Neurosci. 7, 1981 (1982); M. Herkenham, ibid., pp. 403–446), nor with a different form of short-term synaptic plasticity commonly known as augmentation [R. S. Zucker, Annu. Rev. Neurosci. 12, 13 (1989)].
6. Explanations have included origins in the thalamus (3) and the cortex (5).
7. Sprague-Dawley rats (250 to 350 g) were anesthetized with ketamine HCL (100 mg per kilogram of body weight, intraperitoneally) and regularly supplemented (50 mg/kg, intramuscularly). After induction of surgical anesthesia, the animal was placed in a stereotaxic frame. All skin incisions and frame contacts with the skin were injected with lidocaine (2%). A unilateral cranialotomy extended over a large area of the parieto-occipital cortex. Small incisions were made in the dura as necessary, and the cortical surface was covered with saline. Body temperature was monitored and maintained constant with a heating pad. Thalamic stimulating electrodes were inserted with stereotaxic procedures (all coordinates are given in millimeters, in reference to the bregma and the dura) [3. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Academic Press, New York, 1989)]. Coordinates for the VL were approximately (in millimeters) anterior-posterior = -2.0; lateral = 2.0; and depth = 5.5. Stimulus current intensity was selected to induce a stable response (>200 μA) and pulses were monophasic and of 200-μs duration. Twisted, insulated bipolar stainless steel electrodes were used for stimulating the thalamus. Recording electrodes were placed within the following region: anterior-posterior = 0 to 1 mm, and lateral = 3 to 4 mm. Extracellular recording electrodes were Teflon-insulated platinum-iridium wires (0.007-inch diameter, 0.005-inch tip size). For CSD analysis, 20 responses were averaged from each depth, with averages taken at 100-μm intervals from the pial surface to a depth of 2000. CSDs were calculated by approximating the second spatial derivative of voltage with methods previously described [U. Mitra, Physiol. Rev. 65, 37 (1985)]. To ensure stability of the preparation during long recording sessions, we did the following: (i) the moving electrode was always returned to the initial recording depths; (ii) measurements from that site were repeated to check that no significant change had occurred, and (iii) the electrocorticogram was continuously monitored for stability. Electrophysiological responses were sampled at 0.04 kHz and stored on a computer with Experimenter’s Workbench (Data Wave Technologies). Analysis was performed with Experimenter’s Workbench and Origin (Microcal Software). At the end of every experiment, muscle lesions were placed at the thalamic locations that had served as stimulating sites. The animals were given an overdose of sodium pentobarbital, and the brain was extracted and frozen. A fresh block of paraffin was made; the block was sectioned into 7-μm sections in a cryostat (Cryomold), and stained for Nissl. Protocols for all experiments were approved by the University of Wisconsin Institutional Animal Care and Use Committee.
8. Recordings were made from a grid of 24 equally spaced (1 mm apart) penetrations across the frontoparietal neocortex of the rat. Figure 1C shows the amplitude of the negative field potential recorded in the depth (1500 μm) of the cortex in response to the first and second pulse delivered to the VL with an interstimulus interval of 100 ms.
10. Procedures for implanting electrodes in freely moving animals have been described [M. A. Castro-Alamancos and J. Borell, Neurosci. 68, 793 (1995)]. Electrophysiological recordings were performed as in anesthetized animals, but with field effect transistors (INL, Dallas, TX) attached to the recording electrodes as the head connector. During recording sessions an animal was placed in an open field (43.2 cm by 43.2 cm) containing two arrays of 16 photocebe (Med Associates and Columbus, OH) connected by cables to a voltage signal conditioning amplifier (Biologic, France) and a computer monitor (C). Photobeam interruptions were processed by the animal in the open field. Electrophysiological recordings, motor activity consisting of 10-ms pulses signaling the interruption of a photobeam by the experimental subject, and position of the subject were recorded into a video tape recording system (Neurodata Instruments, New York, NY) and to Experimenter’s Workbench. Three awake behavioral states were easily distinguished. During the immobility state the animal was standing still with eyes open and fixed (photobeams were not interrupted). Immobility preceded the onset of the exploration state, during which the animal moved around and explored the environment (large numbers of photobeam interrumps were recorded). Finally, during the resting state the animal was lying down in the cage, typically in one corner, with eyes open (no photobeam counts were detected). The resting state was easily distinguished from immobility by visual observation and by the long period of associated photobeam silence. Whereas, photobeam interruptions were reduced to periods of exploration.
11. Animals had been trained in a motor skill grasping task [M. A. Castro-Alamancos and J. Borell, Neurosci. 52, 837 (1993)] for several days before being implanted with stimulating and recording electrodes. During the recording sessions the animals were allowed to grasp for a fixed period of time within a session of 10 to 15 min. While food was accessible, the animals were very actively engaged in reaching into the tube, grasping and retrieving food pellets, and placing the pellets into their mouths, and immobility did not occur.
13. Intracellular (conventional sharp-type) recording electrodes were filled with 3 M potassium acetate (80
Rho1p, a Yeast Protein at the Interface Between Cell Polarization and Morphogenesis

Jana Drgonová, Tomáš Drgon, Kazuma Tanaka, Roman Kollár, Guang-Chao Chen, Richard A. Ford, Clarence S. M. Chan, Yoshiaki Takai, Enrico Cabib*

The enzyme that catalyzes the synthesis of the major structural component of the yeast cell wall, β(1→3)-D-glucan synthase (also known as 1,3-β-glucan synthase), requires a guanosine triphosphate (GTP) binding protein for activity. The GTP binding protein was identified as Rho1p. The rho1 mutants were defective in GTP stimulation of glucan synthase, and the defect was corrected by addition of purified or recombinant Rho1p. A protein missing in purified preparations from a rho1 strain was identified as Rho1p. Rho1p also regulates protein kinase C, which controls a mitogen-activated protein kinase cascade. Experiments with a dominant positive PKC1 gene showed that the two effects of Rho1p are independent of each other. The colocalization of Rho1p with actin patches at the site of bud emergence and the role of Rho1p in cell wall synthesis emphasizes the importance of Rho1p in polarized growth and morphogenesis.

Little is known at the molecular level about the mechanisms involved in morphogenesis, a fundamental process in growth and differentiation. To study those mechanisms, we have used the cell wall of the yeast Saccharomyces cerevisiae (1). In the yeast budding cycle, synthesis of a new cell wall starts at bud emergence and continues until the daughter cell completes its maturation, after cytokinesis and septum formation (1). Temporal controls must be in place to ensure synchronization between cell wall growth and the cell cycle. Spatial regulation is also required to determine the site where the new bud will emerge (2) and to direct growth of the cell wall in an orderly manner that will result in the correct shape for the new cell. To gain information about such controls, we have studied the biosynthesis of β(1→3)glucan, the major structural component of the yeast cell wall (1). β(1→3)Glucan synthase (GS), a membrane-bound enzyme, is stimulated by submicromolar concentrations of GTP (3).

A proteinaceous component that interacts with GTP has been extracted from membranes of several fungi (4).

Recently, two fractions, A and B, both essential for GS activity, were solubilized from yeast membranes and a GTP binding protein was purified from fraction A (5). To identify this protein, we tested mutants in known small GTP binding proteins. Of the approximately 20 such proteins found thus far in yeast, most participate in intracellular traffic. However, defects in the RHO1 (6) and RHO3 or RHO4 (7) genes result in arrest of the cell cycle at the bud stage with concomitant cell lysis (8, 9), a phenotype consistent with a defect in the initiation of cell wall growth caused by impaired glucan synthesis.

Here, we measured GS activity in the absence or presence of guanosine-5'-O-(3-thiotriphosphate) (GTP-γ-S) in membrane preparations from strains containing a temperature-sensitive mutation in RHO1, rho1-104 (8). Strains with a conditional mutation in RHO3 and a disruption in RHO4 (or vice versa) were also tested. Enzymatic activity and GTP stimulation of the synthase from rho3Δ/rho4Δ mutants differed little from that in the wild type (10). On the other hand, synthase from the rho1 mutant showed a decrease in activity, which was not remedied by the addition of GTP-γ-S (Fig. 1A). The defect was evident even when rho1 cells were grown at the permissive temperature and was exacerbated by incubation of the cells at 37°C. Fraction A (5) restored both activity and GTP-γ-S stimulation to membrane preparations from the rho1-104 strain (Fig. 1B). The wild-type